When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Attention module – this can be a dot product of recurrent states, or the query-key-value fully-connected layers. The output is a 100-long vector w. H 500×100. 100 hidden vectors h concatenated into a matrix c 500-long context vector = H * w. c is a linear combination of h vectors weighted by w.

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  4. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    [7] [8] [9] The initial version was released under the Apache License 2.0 in 2015. [1] [10] Google released an updated version, TensorFlow 2.0, in September 2019. [11] TensorFlow can be used in a wide variety of programming languages, including Python, JavaScript, C++, and Java, [12] facilitating its use in a range of applications in many sectors.

  5. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Scaled dot-product attention & self-attention. The use of the scaled dot-product attention and self-attention mechanism instead of a Recurrent neural network or Long short-term memory (which rely on recurrence instead) allow for better performance as described in the following paragraph. The paper described the scaled-dot production as follows:

  6. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes

  7. Visual temporal attention - Wikipedia

    en.wikipedia.org/wiki/Visual_temporal_attention

    Visual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention , these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable ...

  8. PyTorch Lightning - Wikipedia

    en.wikipedia.org/wiki/PyTorch_Lightning

    PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    TensorFlow and PyTorch, by far the most popular machine learning libraries, [20] as of 2023 largely only include Adam-derived optimizers, as well as predecessors to Adam such as RMSprop and classic SGD. PyTorch also partially supports Limited-memory BFGS, a line-search method, but only for single-device setups without parameter groups. [19] [21]