Search results
Results From The WOW.Com Content Network
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reduction–oxidation [2] or oxidation–reduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4] Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
The reducing agent is stronger when it has a more negative reduction potential and weaker when it has a more positive reduction potential. The more positive the reduction potential the greater the species' affinity for electrons and tendency to be reduced (that is, to receive electrons). The following table provides the reduction potentials of ...
The increase in the oxidation state of an atom, through a chemical reaction, is known as oxidation; a decrease in oxidation state is known as a reduction. Such reactions involve the formal transfer of electrons: a net gain in electrons being a reduction, and a net loss of electrons being oxidation.
Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction. The sum of the Gibbs energy changes for subsequent reductions (e.g. from O 2 to H 2 O 2, then from H 2 O 2 to H 2 O) is the same as the Gibbs energy change for the overall reduction (i.e. from O 2 to H 2 O), in accordance ...
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
In electrochemistry, overpotential is the potential difference between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. [1] The term is directly related to a cell's voltage efficiency.