When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    An attention mechanism was proposed to solve this problem. An image captioning model was proposed in 2015, citing inspiration from the seq2seq model. [25] that would encode an input image into a fixed-length vector. Xu et al (2015), [26] citing Bahdanau et al (2014), [27] applied the attention mechanism as used in the seq2seq model to image ...

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Each decoder consists of three major components: a causally masked self-attention mechanism, a cross-attention mechanism, and a feed-forward neural network. The decoder functions in a similar fashion to the encoder, but an additional attention mechanism is inserted which instead draws relevant information from the encodings generated by the ...

  4. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Seq2seq RNN encoder-decoder with attention mechanism, training Seq2seq RNN encoder-decoder with attention mechanism, training and inferring The attention mechanism is an enhancement introduced by Bahdanau et al. in 2014 to address limitations in the basic Seq2Seq architecture where a longer input sequence results in the hidden state output of ...

  5. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The attention mechanism in a ViT repeatedly transforms representation vectors of image patches, incorporating more and more semantic relations between image patches in an image. This is analogous to how in natural language processing, as representation vectors flow through a transformer, they incorporate more and more semantic relations between ...

  6. Stable Diffusion - Wikipedia

    en.wikipedia.org/wiki/Stable_Diffusion

    The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the desired image depicting a representation of the trained concept.

  7. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Image and video generators like DALL-E (2021), Stable Diffusion 3 (2024), [44] and Sora (2024), use Transformers to analyse input data (like text prompts) by breaking it down into "tokens" and then calculating the relevance between each token using self-attention, which helps the model understand the context and relationships within the data.

  8. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    Similarly, an image model prompted with the text "a photo of a CEO" might disproportionately generate images of white male CEOs, [128] if trained on a racially biased data set. A number of methods for mitigating bias have been attempted, such as altering input prompts [ 129 ] and reweighting training data.

  9. Neural Turing machine - Wikipedia

    en.wikipedia.org/wiki/Neural_Turing_Machine

    A neural Turing machine (NTM) is a recurrent neural network model of a Turing machine.The approach was published by Alex Graves et al. in 2014. [1] NTMs combine the fuzzy pattern matching capabilities of neural networks with the algorithmic power of programmable computers.