Ads
related to: how to calculate cell emf
Search results
Results From The WOW.Com Content Network
Solar cell output voltage for two light-induced currents I L expressed as a ratio to the reverse saturation current I 0 [52] and using a fixed ideality factor m of 2. [53] Their emf is the voltage at their y-axis intercept. Solving the illuminated diode's above simplified current–voltage relationship for output voltage yields:
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
The liquid junction potential cannot be measured directly but calculated. The electromotive force (EMF) of a concentration cell with transference includes the liquid junction potential. The EMF of a concentration cell without transport is: =
The Weston cell or Weston standard cell is a wet-chemical cell that produces a highly stable voltage suitable as a laboratory standard for calibration of voltmeters. Invented by Edward Weston in 1893, it was adopted as the International Standard for EMF from 1911 until superseded by the Josephson voltage standard in 1990.
The emf of the cell at zero current is the maximum possible emf. It can be used to calculate the maximum possible electrical energy that could be obtained from a chemical reaction . This energy is referred to as electrical work and is expressed by the following equation:
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
The emf generated by Faraday's law of induction due to relative movement of a circuit and a magnetic field is the phenomenon underlying electrical generators. When a permanent magnet is moved relative to a conductor, or vice versa, an electromotive force is created.