Search results
Results From The WOW.Com Content Network
The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis , in which all three real solutions are written in terms of cube roots of complex numbers.
A negative real number −x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, + and , where i is the imaginary unit. In general, any non-zero complex number has n distinct complex-valued n th roots, equally distributed around a complex circle of constant absolute value .
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
Radical expression involving roots, also known as an nth root; Radical symbol (√), used to indicate the square root and other roots; Radical of an algebraic group, a concept in algebraic group theory; Radical of an ideal, an important concept in abstract algebra; Radical of a ring, an ideal of "bad" elements of a ring
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Moreover, if the polynomial degree is a power of 2 and the roots are all real, then if there is a root that can be expressed in real radicals it can be expressed in terms of square roots and no higher-degree roots, as can the other roots, and so the roots are classically constructible. Casus irreducibilis for quintic polynomials is discussed by ...
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...