When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    A power diagram is a type of Voronoi diagram defined from a set of circles using the power distance; it can also be thought of as a weighted Voronoi diagram in which a weight defined from the radius of each circle is added to the squared Euclidean distance from the circle's center.

  3. Mathematical diagram - Wikipedia

    en.wikipedia.org/wiki/Mathematical_diagram

    A Voronoi diagram is a special kind of decomposition of a metric space determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set of points. This diagram is named after Georgy Voronoi, also called a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation after Peter Gustav Lejeune ...

  4. Largest empty sphere - Wikipedia

    en.wikipedia.org/wiki/Largest_empty_sphere

    Finding the largest empty circle using the Voronoi diagram (two solutions). In computational geometry , the largest empty sphere problem is the problem of finding a hypersphere of largest radius in d -dimensional space whose interior does not overlap with any given obstacles.

  5. Fortune's algorithm - Wikipedia

    en.wikipedia.org/wiki/Fortune's_algorithm

    As Fortune describes in ref., [1] a modified version of the sweep line algorithm can be used to construct an additively weighted Voronoi diagram, in which the distance to each site is offset by the weight of the site; this may equivalently be viewed as a Voronoi diagram of a set of disks, centered at the sites with radius equal to the weight of the site. the algorithm is found to have ...

  6. Point location - Wikipedia

    en.wikipedia.org/wiki/Point_location

    In many applications, one needs to determine the location of several different points with respect to the same partition of the space. To solve this problem efficiently, it is useful to build a data structure that, given a query point, quickly determines which region contains the query point (e.g. Voronoi Diagram).

  7. Bowyer–Watson algorithm - Wikipedia

    en.wikipedia.org/wiki/Bowyer–Watson_algorithm

    The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to (⁡).

  8. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    The Delaunay triangulation of a discrete point set P in general position corresponds to the dual graph of the Voronoi diagram for P. The circumcenters of Delaunay triangles are the vertices of the Voronoi diagram. In the 2D case, the Voronoi vertices are connected via edges, that can be derived from adjacency-relationships of the Delaunay ...

  9. Sweep line algorithm - Wikipedia

    en.wikipedia.org/wiki/Sweep_line_algorithm

    Animation of Fortune's algorithm, a sweep line technique for constructing Voronoi diagrams. In computational geometry, a sweep line algorithm or plane sweep algorithm is an algorithmic paradigm that uses a conceptual sweep line or sweep surface to solve various problems in Euclidean space. It is one of the critical techniques in computational ...