Search results
Results From The WOW.Com Content Network
A ring R is called a Jacobson ring if the nilradical and Jacobson radical of R/P coincide for all prime ideals P of R. An Artinian ring is Jacobson, and its nilradical is the maximal nilpotent ideal of the ring. In general, if the nilradical is finitely generated (e.g., the ring is Noetherian), then it is nilpotent.
If R is commutative, the Jacobson radical always contains the nilradical. If the ring R is a finitely generated Z-algebra, then the nilradical is equal to the Jacobson radical, and more generally: the radical of any ideal I will always be equal to the intersection of all the maximal ideals of R that contain I. This says that R is a Jacobson ring.
In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. [1] [2]The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil.
A radical ideal (or semiprime ideal) is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal . This concept is generalized to non-commutative rings in the semiprime ring article.
A conservative replacement (also called a conservative mutation or a conservative substitution or a homologous replacement) is an amino acid replacement in a protein that changes a given amino acid to a different amino acid with similar biochemical properties (e.g. charge, hydrophobicity and size). [1] [2]
Amino acid replacement is a change from one amino acid to a different amino acid in a protein due to point mutation in the corresponding DNA sequence. It is caused by nonsynonymous missense mutation which changes the codon sequence to code other amino acid instead of the original.
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical n i l ( g ) {\displaystyle {\mathfrak {nil}}({\mathfrak {g}})} of a finite-dimensional Lie algebra g {\displaystyle {\mathfrak {g}}} is its maximal nilpotent ideal , which exists because the sum of any two nilpotent ideals is nilpotent.
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...