Search results
Results From The WOW.Com Content Network
Hydrogen fluoride is typically produced by the reaction between sulfuric acid and pure grades of the mineral fluorite: [14] CaF 2 + H 2 SO 4 → 2 HF + CaSO 4. About 20% of manufactured HF is a byproduct of fertilizer production, which generates hexafluorosilicic acid. This acid can be degraded to release HF thermally and by hydrolysis: H 2 SiF ...
The carbon–fluorine bond of the smaller molecules is formed in three principal ways: Fluorine replaces a halogen or hydrogen, or adds across a multiple bond. The direct reaction of hydrocarbons with fluorine gas can be dangerously reactive, so the temperature may need to be lowered even to −150 °C (−240 °F). [115] "
Elemental fluorine and virtually all fluorine compounds are produced from hydrogen fluoride or its aqueous solution, hydrofluoric acid. Hydrogen fluoride is produced in kilns by the endothermic reaction of fluorite (CaF 2 ) with sulfuric acid: [ 169 ]
The Simons process, named after Joseph H. Simons entails electrolysis of a solution of an organic compound in a solution of hydrogen fluoride. An individual reaction can be described as: R 3 C–H + HF → R 3 C–F + H 2. In the course of a typical synthesis, this reaction occurs once for each C–H bond in the precursor.
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water.Solutions of HF are colorless, acidic and highly corrosive.A common concentration is 49% (48-52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling point near room temperature.
This neutralization reaction forms hydrogen fluoride (HF), the conjugate acid of fluoride. In aqueous solution, fluoride has a pK b value of 10.8. It is therefore a weak base, and tends to remain as the fluoride ion rather than generating a substantial amount of hydrogen fluoride. That is, the following equilibrium favours the left-hand side in ...
In the reaction between hydrogen and fluorine, hydrogen is being oxidized and fluorine is being reduced: H 2 + F 2 → 2 HF. This spontaneous reaction releases 542 kJ per 2 g of hydrogen because the H-F bond is much stronger than the F-F bond. This reaction can be analyzed as two half-reactions. The oxidation reaction converts hydrogen to protons:
HOF is an intermediate in the oxidation of water by fluorine, which produces hydrogen fluoride, oxygen difluoride, hydrogen peroxide, ozone and oxygen. HOF is explosive at room temperature, forming HF and O 2: [1] 2 HOF → 2 HF + O 2. This reaction is catalyzed by water. [2]