Search results
Results From The WOW.Com Content Network
In addition, the conveyor moves an immense volume of water—more than 100 times the flow of the Amazon River (Ross, 1995). The conveyor belt is also a vital component of the global ocean nutrient and carbon dioxide cycles. Warm surface waters are depleted of nutrients and carbon dioxide, but they are enriched again as they travel through the ...
A process previously proposed to contribute to plate motion and the formation of new oceanic crust at mid-ocean ridges is the "mantle conveyor" due to deep convection (see image). [27] [28] However, some studies have shown that the upper mantle (asthenosphere) is too plastic (flexible) to generate enough friction to pull the tectonic plate along.
Slab pull is a geophysical mechanism whereby the cooling and subsequent densifying of a subducting tectonic plate produces a downward force along the rest of the plate. In 1975 Forsyth and Uyeda used the inverse theory method to show that, of the many forces likely to be driving plate motion, slab pull was the strongest. [1]
The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt, coined by climate scientist Wallace Smith Broecker. [5] [6] It is also referred to as the meridional overturning circulation, or MOC. This name is used because not every circulation pattern caused by temperature and ...
The figure is a schematic diagram depicting a subduction zone. The subduction slab on the right enters the mantle with a varying temperature gradient while importing water in a downward motion. A model of the subducting Farallon slab under North America. In geology, the slab is a significant constituent of subduction zones. [1]
AMOC in relation to the global thermohaline circulation . The Atlantic meridional overturning circulation (AMOC) is the main current system in the Atlantic Ocean [1]: 2238 and is also part of the global thermohaline circulation, which connects the world's oceans with a single "conveyor belt" of continuous water exchange. [18]
Simplified model of mantle convection: [1] Whole-mantle convection. Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4]
[1] If the viscosity of the upwelling asthenosphere is greater than that of the mantle lithosphere, delamination will stop. The upwelling asthenosphere forms two chilled, solid boundary layers on the top and bottom of the sill layer. This reduces the thickness of the portion of the lowermost crust which behaves viscously.