Search results
Results From The WOW.Com Content Network
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. Notable examples are listed below.
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
The convective condensation level (CCL) results when strong surface heating causes buoyant lifting of surface air and subsequent mixing of the planetary boundary layer, so that the layer near the surface ends up with a dry adiabatic lapse rate. As the mixing becomes deeper, it will get to the point where the LCL of an air parcel starting at the ...
Diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw); see CAPE. The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.
This process occurs when one or more of three possible lifting agents—cyclonic/frontal, convective, or orographic—causes air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. [7]
In Kamin's blocking effect [1] the conditioning of an association between two stimuli, a conditioned stimulus (CS) and an unconditioned stimulus (US) is impaired if, during the conditioning process, the CS is presented together with a second CS that has already been associated with the unconditioned stimulus.
For example, with density nonuniform in space but constant in time, the continuity equation to be added to the above set would correspond to: = So the case of constant and uniform density is the only one not requiring the continuity equation as additional equation regardless of the presence or absence of the incompressible constraint.
An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...