When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...

  3. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n -ball of radius R is where is the volume of the unit n -ball, the n -ball of radius 1. The real number can be expressed via a two-dimension recurrence relation.

  4. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: where. is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag.

  5. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  6. Sphericity - Wikipedia

    en.wikipedia.org/wiki/Sphericity

    Defined by Wadell in 1935, [1] the sphericity, , of an object is the ratio of the surface area of a sphere with the same volume to the object's surface area: where is volume of the object and is the surface area. The sphericity of a sphere is unity by definition and, by the isoperimetric inequality, any shape which is not a sphere will have ...

  7. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Drag (physics) In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object, moving with respect to a surrounding fluid. [1] This can exist between two fluid layers, two solid surfaces, or between a fluid and solid surface. Drag forces tend to decrease fluid velocity ...

  8. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4[1][2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  9. Stokes stream function - Wikipedia

    en.wikipedia.org/wiki/Stokes_stream_function

    In fluid dynamics, the Stokes stream function is used to describe the streamlines and flow velocity in a three-dimensional incompressible flow with axisymmetry. A surface with a constant value of the Stokes stream function encloses a streamtube, everywhere tangential to the flow velocity vectors. Further, the volume flux within this streamtube ...