Search results
Results From The WOW.Com Content Network
For example, 7 × 10 13 h −1 M ☉ = 10 14 h −1 0.70 M ☉. Our best measurement, as of 2013, for the Hubble parameter is h = 0.6780 ± 0.0077 from the Planck mission. In early 2011 it was 0.704 +0.013 −0.014 from WMAP 7-year data. [1] See Hubble's law#Determining the Hubble constant for the most recent value of H 0.
Instead of working with Hubble's constant, a common practice is to introduce the dimensionless Hubble constant, usually denoted by h and commonly referred to as "little h", [29] then to write Hubble's constant H 0 as h × 100 km⋅s −1 ⋅Mpc −1, all the relative uncertainty of the true value of H 0 being then relegated to h. [46]
For example, 7 × 10 13 h −1 M ☉ = 10 14 h −1 0.70 M ☉. Our best measurement, as of 2013, for the Hubble parameter is h = 0.6780 ± 0.0077 from the Planck mission. In early 2011 it was 0.704 +0.013 −0.014 from WMAP 7-year data. [1] See Hubble's law#Determining the Hubble constant for the most recent value of H 0.
Even light itself does not have a "velocity" of c in this sense; the total velocity of any object can be expressed as the sum = + where is the recession velocity due to the expansion of the universe (the velocity given by Hubble's law) and is the "peculiar velocity" measured by local observers (with = ˙ () and = ˙ (), the dots indicating a ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
The observational result of Hubble's law, the proportional relationship between distance and the speed with which a galaxy is moving away from us, usually referred to as redshift, is a product of the cosmic distance ladder. Edwin Hubble observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result ...
In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course ...
In this case, the above expression for the scale factor is not valid and , where the constant H is the Hubble parameter. More generally, the expansion of the universe is accelerating for any equation of state w < − 1 / 3 {\displaystyle w<-1/3} .