When.com Web Search

  1. Ads

    related to: identifying class boundaries in statistics worksheet free

Search results

  1. Results From The WOW.Com Content Network
  2. Jenks natural breaks optimization - Wikipedia

    en.wikipedia.org/wiki/Jenks_natural_breaks...

    The Jenks optimization method, also called the Jenks natural breaks classification method, is a data clustering method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the ...

  3. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...

  4. Decision boundary - Wikipedia

    en.wikipedia.org/wiki/Decision_boundary

    Decision boundaries are not always clear cut. That is, the transition from one class in the feature space to another is not discontinuous, but gradual. This effect is common in fuzzy logic based classification algorithms, where membership in one class or another is ambiguous. Decision boundaries can be approximations of optimal stopping boundaries.

  5. Boundary problem (spatial analysis) - Wikipedia

    en.wikipedia.org/wiki/Boundary_problem_(spatial...

    That is, for measurement or administrative purposes, geographic boundaries are drawn, but the boundaries per se can bring about different spatial patterns in geographic phenomena. [5] It has been reported that the difference in the way of drawing the boundary significantly affects identification of the spatial distribution and estimation of the ...

  6. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    In machine learning, the observations are often known as instances, the explanatory variables are termed features (grouped into a feature vector), and the possible categories to be predicted are classes. Other fields may use different terminology: e.g. in community ecology, the term "classification" normally refers to cluster analysis.

  7. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks) based on one or more variables.

  8. Intraclass correlation - Wikipedia

    en.wikipedia.org/wiki/Intraclass_correlation

    In statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), [1] is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other.

  9. Margin classifier - Wikipedia

    en.wikipedia.org/wiki/Margin_classifier

    The margin for an iterative boosting algorithm given a dataset with two classes can be defined as follows: the classifier is given a sample pair (,), where is a domain space and = {, +} is the sample's label.