Search results
Results From The WOW.Com Content Network
Instead of working with Hubble's constant, a common practice is to introduce the dimensionless Hubble constant, usually denoted by h and commonly referred to as "little h", [29] then to write Hubble's constant H 0 as h × 100 km⋅s −1 ⋅Mpc −1, all the relative uncertainty of the true value of H 0 being then relegated to h. [46]
0.70 M ☉. Our best measurement, as of 2013, for the Hubble parameter is h = 0.6780 ± 0.0077 from the Planck mission. In early 2011 it was 0.704 +0.013 −0.014 from WMAP 7-year data. [1] See Hubble's law#Determining the Hubble constant for the most recent value of H 0.
The Hubble parameter can change over time if other parts of the equation are time dependent (in particular the mass density, the vacuum energy, or the spatial curvature). Evaluating the Hubble parameter at the present time yields Hubble's constant which is the proportionality constant of Hubble's law.
The observational result of Hubble's law, the proportional relationship between distance and the speed with which a galaxy is moving away from us, usually referred to as redshift, is a product of the cosmic distance ladder. Edwin Hubble observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result ...
For the Planck values (,) = (0.3086, 0.6914), shown by the box in the upper left corner of the figure, this correction factor is about = . For a flat universe without any cosmological constant, shown by the star in the lower right corner, F = 2 / 3 {\displaystyle ~F={2}/{3}~} is much smaller and thus the universe is younger for a fixed value of ...
One application of Hubble's law is to estimate distances to galaxies based on measurements of their recessional velocities. However, for relatively nearby galaxies the peculiar velocity can be comparable to or larger than the recessional velocity, in which case Hubble's law does not give a good estimate of an object's distance based on its ...
In this case, the above expression for the scale factor is not valid and , where the constant H is the Hubble parameter. More generally, the expansion of the universe is accelerating for any equation of state w < − 1 / 3 {\displaystyle w<-1/3} .
The law is named for the astronomers Edwin Hubble and John Henry Reynolds. It was first formulated by Reynolds in 1913 [ 2 ] from his observations of galaxies (then still known as nebulae). It was later re-derived by Hubble in 1930 [ 3 ] specifically in observations of elliptical galaxies.