Search results
Results From The WOW.Com Content Network
Olefin Conversion Technology, also called the Phillips Triolefin Process, is the industrial process that interconverts propylene with ethylene and 2-butenes. [1] The process is also called the ethylene to propylene (ETP) process. In ETP, ethylene is dimerized to 1-butene, which is isomerized to 2-butenes.
In organic chemistry, olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. [ 1 ] [ 2 ] Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative ...
Olefin conversion technology, a method in industrial chemistry Office Customisation Tool, available in some versions of Microsoft Office 2007 Chinese places and companies
High severity fluid catalytic cracking (FCC) uses traditional FCC technology under severe conditions (higher catalyst-to-oil ratios, higher steam injection rates, higher temperatures, etc.) in order to maximize the amount of propene and other light products. A high severity FCC unit is usually fed with gas oils (paraffins) and residues, and ...
The Shell higher olefin process (SHOP) is a chemical process for the production of linear alpha olefins via ethylene oligomerization and olefin metathesis invented and exploited by Shell plc. [1] The olefin products are converted to fatty aldehydes and then to fatty alcohols , which are precursors to plasticizers and detergents .
In his original publication, Mukaiyama proposed that the reaction proceeded through the intermediacy of a cobalt peroxide adduct. A metal exchange reaction between a hydrosilane and the cobalt peroxide adduct leads to a silyl peroxide, which is converted to the alcohol upon reduction, presumably via action of the cobalt catalyst.
The reaction was first described in 1985 with the conversion of biphenyl 3.1 to a phenanthrene in scheme 3: [2] The carbene is a tungsten carbonyl when used in stoichiometric amounts (1 equivalent) yields 41% of the phenanthrene 3.2 and when used in catalytic amounts phenanthrene 3.3.
This contributes both to costs and the emissions of the process. Catalytic reforming has a limited ability to process naphthas with a high content of normal paraffins, e.g. naphthas from the gas-to-liquids (GTL) units. The reformate has a much higher content of benzene than is permissible by the current regulations in many countries.