Ads
related to: algebraic geometry an introduction 6th edition
Search results
Results From The WOW.Com Content Network
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.
The Éléments de géométrie algébrique (EGA; from French: "Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné) is a rigorous treatise on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the Institut des Hautes Études Scientifiques.
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects.
Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions, the study of which led to differential geometry. They can also be defined as implicit equations, often polynomial equations (which spawned algebraic geometry). Analytic geometry also makes it possible to consider ...
The textbook provides an introduction to computation geometry from the point of view of practical applications. Starting with an introduction chapter, each of the 15 remaining ones formulates a real application problem, formulates an underlying geometrical problem, and discusses techniques of computational geometry useful for its solution, with ...
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these ...