Search results
Results From The WOW.Com Content Network
Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.
The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product
In mathematics, for positive integers k and s, a vectorial addition chain is a sequence V of k-dimensional vectors of nonnegative integers v i for −k + 1 ≤ i ≤ s together with a sequence w, such that
The simplest example of a vector space over a field F is the field F itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all n -tuples (sequences of length n ) ( a 1 , a 2 , … , a n ) {\displaystyle (a_{1},a_{2},\dots ,a_{n})} of elements a i of F form a vector space that ...
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.
Minkowski's addition of convex shapes by Alexander Bogomolny: an applet; Wikibooks:OpenSCAD User Manual/Transformations#minkowski by Marius Kintel: Application; Application of Minkowski Addition to robotics by Joan Gerard; Demonstration of Minkowski additivity, convex monotonicity, and other properties of the Earth Movers distance
Given vector fields V, W defined on S and a smooth function f defined on S, the operations of scalar multiplication and vector addition, ():= () (+) ():= + (), make the smooth vector fields into a module over the ring of smooth functions, where multiplication of functions is defined pointwise.
It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.