Ad
related to: area formula with diameter
Search results
Results From The WOW.Com Content Network
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
The basal area (BA) of a tree can be estimated from its diameter at breast height (DBH), the diameter of the trunk as measured 1.3m (4.5 ft) above the ground. DBH is converted to BA based on the formula for the area of a circle:
The area in circular mils, A, of a circle with a diameter of d mils, is given by the formula: {} = {}. In Canada and the United States, the Canadian Electrical Code (CEC) and the National Electrical Code (NEC), respectively, use the circular mil to define wire sizes larger than 0000 AWG .
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.