When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    The interior of the unit circle is called the open unit disk, while the interior of the unit circle combined with the unit circle itself is called the closed unit disk. One may also use other notions of "distance" to define other "unit circles", such as the Riemannian circle; see the article on mathematical norms for additional examples.

  3. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle circumference and radius are proportional. The area enclosed and the square of its radius are proportional. The constants of proportionality are 2 π and π respectively. The circle that is centred at the origin with radius 1 is called the unit circle. Thought of as a great circle of the unit sphere, it becomes the Riemannian circle.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O. Sine function on unit circle (top) and its graph (bottom) In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle.

  5. Orthogonal polynomials on the unit circle - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials_on...

    In mathematics, orthogonal polynomials on the unit circle are families of polynomials that are orthogonal with respect to integration over the unit circle in the complex plane, for some probability measure on the unit circle. They were introduced by Szegő (1920, 1921, 1939).

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Fig. 1a – Sine and cosine of an angle θ defined using the unit circle Indication of the sign and amount of key angles according to rotation direction. Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37]

  7. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    On the left is a unit circle showing the changes ^ and ^ in the unit vectors ^ and ^ for a small increment in angle . During circular motion, the body moves on a curve that can be described in the polar coordinate system as a fixed distance R from the center of the orbit taken as the origin, oriented at an angle θ ( t ) from some reference ...

  8. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always strictly greater than , though it can be made arbitrarily close by selecting a small enough circle. If the Gaussian curvature of the plane is −1 then the geodesic curvature of a circle of radius r is: 1 tanh ⁡ ( r ) {\displaystyle {\frac {1 ...

  9. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan...

    The problem addressed by the circle method is to force the issue of taking r = 1, by a good understanding of the nature of the singularities f exhibits on the unit circle. The fundamental insight is the role played by the Farey sequence of rational numbers, or equivalently by the roots of unity: