Search results
Results From The WOW.Com Content Network
The only rocket-powered fighter ever deployed was the Messerschmitt Me 163B Komet. The Komet had a HWK 109-509, a rocket motor which consumed methanol/hydrazine as fuel and high test peroxide T-Stoff as oxidizer. The hypergolic rocket motor had the advantage of fast climb and quick-hitting tactics at the cost of being very volatile and capable ...
Monomethylhydrazine (MMH) is a highly toxic, volatile hydrazine derivative with the chemical formula CH 6 N 2. It is used as a rocket propellant in bipropellant rocket engines because it is hypergolic with various oxidizers such as nitrogen tetroxide (N 2 O 4) and nitric acid (HNO 3). As a propellant, it is described in specification MIL-PRF ...
Hydrazine was used in fuel cells manufactured by Allis-Chalmers Corp., including some that provided electric power in space satellites in the 1960s. A mixture of 63% hydrazine, 32% hydrazine nitrate and 5% water is a standard propellant for experimental bulk-loaded liquid propellant artillery .
Additionally, hydrazine is highly toxic and carcinogenic, while LMP-103S is only moderately toxic. LMP-103S is UN Class 1.4S allowing for transport on commercial aircraft, and was demonstrated on the Prisma satellite in 2010. Special handling is not required. LMP-103S could replace hydrazine as the most commonly used monopropellant. [17] [18]
UDMH is a derivative of hydrazine and is sometimes referred to as a hydrazine. As a fuel, it is described in specification MIL-PRF-25604 in the United States. [13] UDMH is stable and can be kept loaded in rocket fuel systems for long periods, which makes it appealing for use in many liquid rocket engines, despite its cost.
In the case of solid rocket motors, the fuel and oxidizer are combined when the motor is cast. Propellant combustion occurs inside the motor casing, which must contain the pressures developed. Solid rockets typically have higher thrust, less specific impulse , shorter burn times, and a higher mass than liquid rockets, and additionally cannot be ...
Both propellants are extremely dangerous individually: nitric acid is highly corrosive and releases toxic nitrogen dioxide during reactions, or even simply while exposed to air in its highly concentrated "red fuming" form, typically used as rocket propellant. UDMH is both toxic and corrosive. [2]
Direct comparison of physical properties, performance, cost, storability, toxicity, storage requirements and accidental release measures for hydrogen peroxide, hydroxylammonium nitrate (HAN), hydrazine and various cold gas monopropellants shows that hydrazine is the highest performing in terms of specific impulse. However, hydrazine is also the ...