Search results
Results From The WOW.Com Content Network
In general, population growth roughly follows one of these trends: [1] Logistic growth leveling out at some carrying capacity. Overshoot ("boom" and "bust" cycles). Oscillation at or below the carrying capacity. Insect pest growth rates are heavily influenced by temperature and rainfall, among other variables.
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
Thus r is the maximum theoretical rate of increase of a population per individual – that is, the maximum population growth rate. The concept is commonly used in insect population ecology or management to determine how environmental factors affect the rate at which pest populations increase. See also exponential population growth and logistic ...
By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially. However, as population size nears carrying capacity, the growth decreases and reaches zero at K. [20]
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The prey are assumed to have an unlimited food supply and to reproduce exponentially, unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation on the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy .