Search results
Results From The WOW.Com Content Network
Gnomonic projection of a portion of the north hemisphere centered on the geographic North Pole The gnomonic projection with Tissot's indicatrix of deformation. A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly ...
Gnomonic projection is a map projection where the vanishing point is in the centre of a spheroid. References Sources. Montucla ...
Gott, Goldberg and Vanderbei’s double-sided disk map was designed to minimize all six types of map distortions. Not properly "a" map projection because it is on two surfaces instead of one, it consists of two hemispheric equidistant azimuthal projections back-to-back. [5] [6] [7] 1879 Peirce quincuncial: Other Conformal Charles Sanders Peirce
The gnomonic projection displays great circles as straight lines. Can be constructed by using a point of perspective at the center of the Earth. r(d) ...
The gnomonic projection transforms the edges of spherical polyhedra to straight lines, preserving all polyhedra contained within a hemisphere, so it is a common choice. The Snyder equal-area projection can be applied to any polyhedron with regular faces. [ 3 ]
Admiralty Gnomonic Chart of the Indian and Southern Oceans, for use in plotting great circle tracks. A straight line drawn on a gnomonic chart is a portion of a great circle. When this is transferred to a Mercator chart, it becomes a curve.
Combined projections from the Klein disk model (yellow) to the Poincaré disk model (red) via the hemisphere model (blue) The Beltrami–Klein model (K in the picture) is an orthographic projection from the hemispherical model and a gnomonic projection of the hyperboloid model (Hy) with the center of the hyperboloid (O) as its center.
The stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection.