When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Plane wave - Wikipedia

    en.wikipedia.org/wiki/Plane_wave

    The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = ⁡ (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".

  3. Ripple tank - Wikipedia

    en.wikipedia.org/wiki/Ripple_tank

    If a concave parabolic obstacle is used, a plane wave pulse will converge on a point after reflection. This point is the focal point of the mirror. Circular waves can be produced by dropping a single drop of water into the ripple tank. If this is done at the focal point of the "mirror" plane waves will be reflected back.

  4. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    A plane wave is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency.

  5. Traveling plane wave - Wikipedia

    en.wikipedia.org/wiki/Traveling_plane_wave

    The wavefronts of a traveling plane wave in three-dimensional space. In mathematics and physics , a traveling plane wave [ 1 ] is a special case of plane wave , namely a field whose evolution in time can be described as simple translation of its values at a constant wave speed c {\displaystyle c} , along a fixed direction of propagation n → ...

  6. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    New waves seem to emerge at the back of a wave group, grow in amplitude until they are at the center of the group, and vanish at the wave group front. For surface gravity waves, the water particle velocities are much smaller than the phase velocity, in most cases.

  7. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion may be caused either by geometric boundary conditions (waveguides, shallow water) or by interaction of the waves with the transmitting medium. Elementary particles , considered as matter waves , have a nontrivial dispersion relation, even in the absence of geometric constraints and other media.

  8. Transverse wave - Wikipedia

    en.wikipedia.org/wiki/Transverse_wave

    The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves are called "primary waves", or "P-waves" in geophysics. Water waves involve both longitudinal and transverse motions ...

  9. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    The effect of frequency dispersion is that the waves travel as a function of wavelength, so that spatial and temporal phase properties of the propagating wave are constantly changing. For example, under the action of gravity, water waves with a longer wavelength travel faster than those with a shorter wavelength.