Search results
Results From The WOW.Com Content Network
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.
It is different from the isoelectric point (pI) in that pI is the pH value at which the net charge of the molecule, including bound ions is zero. Whereas the isoionic point is at net charge zero in a deionized solution. Thus, the isoelectric and isoionic points are equal when the concentration of charged species is zero.
Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour is more usually exploited for peptides and proteins than single amino acids. Zwitterions have minimum solubility at their isoelectric point, and some amino acids (in particular, with nonpolar side chains) can be isolated by precipitation from ...
The iso-electric point is the pH value at which the zeta potential is approximately zero. At a pH near the iso-electric point (± 2 pH units), colloids are usually unstable; the particles tend to coagulate or flocculate. Such titrations use acids or bases as titration reagents. Tables of iso-electric points for different materials are available ...
At pH equal to the isoelectric point, polyampholytes are neutral. Under these conditions, they may show minimal viscosity in solutions or lose solubility and precipitate. [2] Proteins are a class of natural polyampholytes, as they contain both positively and negatively charged amino acid residues within their structure. These charges are ...
The isoelectric point (pI) is the pH of a solution at which the net primary charge of a protein becomes zero. At a solution pH that is above the pI the surface of the protein is predominantly negatively charged and therefore like-charged molecules will exhibit repulsive forces.
It is often referred to as cysteate, which near neutral pH takes the form − O 3 SCH 2 CH(NH 3 +)CO 2 −. It is an amino acid generated by oxidation of cysteine, whereby a thiol group is fully oxidized to a sulfonic acid/sulfonate group. It is further metabolized via 3-sulfolactate, which converts to pyruvate and sulfite/bisulfite.
The pH-dependence of the activity displayed by enzymes and the pH-dependence of protein stability, for example, are properties that are determined by the pK a values of amino acid side chains. The p K a values of an amino acid side chain in solution is typically inferred from the p K a values of model compounds (compounds that are similar to ...