Search results
Results From The WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
It is the limit case of a burn to generate a particular amount of delta-v, as the burn time tends to zero. In the physical world no truly instantaneous change in velocity is possible as this would require an "infinite force" applied during an "infinitely short time" but as a mathematical model it in most cases describes the effect of a maneuver ...
Burn rate (typically expressed in mm/s or in/s) is the sample length over time at a given pressure and temperature. For solid fuel propellant, the most common method of measuring burn rate is the Crawford Type Strand Burning Rate Bomb System [3] (also known as the Crawford Burner or Strand Burner), as described in MIL-STD-286C. [4]
Where is the burn time in seconds, is the instantaneous thrust in newtons, is average thrust in newtons, and is the total impulse in newton seconds. Class A is from 1.26 newton-seconds (conversion factor 4.448 N per lb. force) to 2.5 N·s, and each class is then double the total impulse of the preceding class, with Class B being 2.51 to 5.00 N·s.
For example, although more fuel is needed to transfer a heavier communication satellite from low Earth orbit to geosynchronous orbit than for a lighter one, the delta-v required is the same. Delta-v is also additive, as contrasted to rocket burn time, the latter having greater effect later in the mission when more fuel has been used up.
The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
As a result the Oberth maneuver is much more useful for high-thrust rocket engines like liquid-propellant rockets, and less useful for low-thrust reaction engines such as ion drives, which take a long time to gain speed. Low thrust rockets can use the Oberth effect by splitting a long departure burn into several short burns near the periapsis.