When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  4. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    Whitening a data matrix follows the same transformation as for random variables. An empirical whitening transform is obtained by estimating the covariance (e.g. by maximum likelihood) and subsequently constructing a corresponding estimated whitening matrix (e.g. by Cholesky decomposition).

  5. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...

  6. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    which represents the inner product space (see Gramian matrix) of the otherwise intractable feature space. The dual form that arises in the creation of a kernel allows us to mathematically formulate a version of PCA in which we never actually solve the eigenvectors and eigenvalues of the covariance matrix in the Φ ( x ) {\displaystyle \Phi ...

  7. CMA-ES - Wikipedia

    en.wikipedia.org/wiki/CMA-ES

    The covariance matrix defines a bijective transformation (encoding) for all solution vectors into a space, where the sampling takes place with identity covariance matrix. Because the update equations in the CMA-ES are invariant under linear coordinate system transformations, the CMA-ES can be re-written as an adaptive encoding procedure applied ...

  8. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In the Bayesian interpretation is the inverse covariance matrix of , is the expected value of , and is the inverse covariance matrix of . The Tikhonov matrix is then given as a factorization of the matrix Q = Γ T Γ {\displaystyle Q=\Gamma ^{\mathsf {T}}\Gamma } (e.g. the Cholesky factorization ) and is considered a whitening filter .

  9. Matérn covariance function - Wikipedia

    en.wikipedia.org/wiki/Matérn_covariance_function

    In statistics, the Matérn covariance, also called the Matérn kernel, [1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. [2]