When.com Web Search

  1. Ad

    related to: how to solve homogeneous ode calculator algebra 2 equations

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    [3] [4] The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. [1] Such a differential equation, with y as the dependent variable, superscript (n) denoting n th-derivative, and a n, a n − 1, ..., a 1, a 0 as constants,

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.

  4. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) ″ + ′ + =, where ,, are real non-zero coefficients. . Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, , vanish

  5. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,

  6. Abel's identity - Wikipedia

    en.wikipedia.org/wiki/Abel's_identity

    In mathematics, Abel's identity (also called Abel's formula [1] or Abel's differential equation identity) is an equation that expresses the Wronskian of two solutions of a homogeneous second-order linear ordinary differential equation in terms of a coefficient of the original differential equation.

  7. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    Lie's group theory of differential equations has been certified, namely: (1) that it unifies the many ad hoc methods known for solving differential equations, and (2) that it provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations. [26]

  8. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A differential equation can be homogeneous in either of two respects. A first order differential equation is said to be homogeneous if it may be written (,) = (,), where f and g are homogeneous functions of the same degree of x and y. [1] In this case, the change of variable y = ux leads to an equation of the form

  9. Liouville's formula - Wikipedia

    en.wikipedia.org/wiki/Liouville's_formula

    In mathematics, Liouville's formula, also known as the Abel–Jacobi–Liouville identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system.