Search results
Results From The WOW.Com Content Network
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5.
For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful. By the central limit theorem, because the chi-squared distribution is the sum of independent random variables with finite mean and variance, it converges to a normal distribution for large .
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions: [7] Simple random sample The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability ...
With large samples, a chi-squared test (or better yet, a G-test) can be used in this situation. However, the significance value it provides is only an approximation, because the sampling distribution of the test statistic that is calculated is only approximately equal to the theoretical chi-squared distribution. The approximation is poor when ...
From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared distributions. Suppose that a random variable J has a Poisson distribution with mean λ / 2 {\displaystyle \lambda /2} , and the conditional distribution of Z given J = i is chi-squared with k + 2 i degrees of freedom.
Define = (), so that the Q i are quadratic forms. Further assume =. Cochran's theorem states that the following are equivalent: + + =, the Q i are independent; each Q i has a chi-squared distribution with r i degrees of freedom. [1] [5]