Search results
Results From The WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
The "chart" actually consists of a pair of charts: One to monitor the process standard deviation (as approximated by the sample moving range) and another to monitor the process mean, as is done with the ¯ and s and individuals control charts.
If the considered function is the density of a normal distribution of the form = [()] where σ is the standard deviation and x 0 is the expected value, then the relationship between FWHM and the standard deviation is [1] = .
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
Common measures of statistical dispersion are the standard deviation, variance, range, interquartile range, absolute deviation, mean absolute difference and the distance standard deviation. Measures that assess spread in comparison to the typical size of data values include the coefficient of variation.
The moving ranges involved are serially correlated so runs or cycles can show up on the moving average chart that do not indicate real problems in the underlying process. [ 2 ] : 237 In some cases, it may be advisable to use the median of the moving range rather than its average, as when the calculated range data contains a few large values ...
If the sample has mean 0, standard deviation 1 then a line through 0 with slope 1 could be used. With more points, random deviations from a line will be less pronounced. Normal plots are often used with as few as 7 points, e.g., with plotting the effects in a saturated model from a 2-level fractional factorial experiment .