Search results
Results From The WOW.Com Content Network
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product by of a polynomial in of degree less than the degree of .
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [ 8 ] Polynomial division leads to a result known as the polynomial remainder theorem : If a polynomial f ( x ) is divided by x − k , the remainder is the constant r = f ( k ).
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1).
Under stronger regularity assumptions on f there are several precise formulas for the remainder term R k of the Taylor polynomial, the most common ones being the following. Mean-value forms of the remainder — Let f : R → R be k + 1 times differentiable on the open interval with f ( k ) continuous on the closed interval between a {\textstyle ...
Remainder theorem may refer to: Polynomial remainder theorem; Chinese remainder theorem This page was last edited on 29 December 2019, at 22:03 (UTC). Text is ...
The quotient and remainder may be computed by any of several algorithms, including polynomial long division and synthetic division. [19] When the denominator b(x) is monic and linear, that is, b(x) = x − c for some constant c, then the polynomial remainder theorem asserts that the remainder of the division of a(x) by b(x) is the evaluation a ...
Chevalley–Warning theorem (field theory) Chinese remainder theorem (number theory) Choi's theorem on completely positive maps (operator theory) Chomsky–Schützenberger enumeration theorem (formal language theory) Chomsky–Schützenberger representation theorem (formal language theory) Choquet–Bishop–de Leeuw theorem (functional analysis)
In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder. The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division.