Search results
Results From The WOW.Com Content Network
Identification of the ring or chain with the maximum number of senior groups. Identification of the ring or chain with the most senior elements (In order: N, P, Si, B, O, S, C). Identification of the parent compound. Rings are senior to chains if composed of the same elements. For cyclic systems: Identification of the parent cyclic ring.
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
A diagram of an aromatic ring current. B 0 is the applied magnetic field, the red arrow indicating its direction. The orange ring shows the direction of the ring current, and the purple rings show the direction of the induced magnetic field. An aromatic ring current is an effect observed in aromatic molecules such as benzene and naphthalene.
The most widely practised example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [2] (After dehydrogenation and polymerization, the commodity plastic polystyrene is produced.) In this process, acids are used as catalyst to generate the incipient carbocation. Many other electrophilic reactions ...
A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). [1] Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles .
The C 2 benzenes are a class of organic aromatic compounds which contain a benzene ring and two other carbon atoms. For the hydrocarbons with no further unsaturation, there are four isomers. There are three xylenes and one ethylbenzene .
Both mechanisms are shown as follows for the ring contraction of biphenylene: The first involves a 1,2-hydrogen shift to a carbene followed by a 1,2-carbon shift on the same C-C bond but in opposite directions. The second differs from the first only by the order of the 1,2-shifts, with the 1,2-carbon shift preceding the 1,2-hydrogen shift.
Hexafluorobenzene stands somewhat aside in the perhalogenbenzenes. If a perhalogenated benzene ring were to remain planar, then geometric constraints would force adjacent halogens closer than their associated nonbonding radius. Consequently the benzene ring buckles, reducing p-orbital overlap and aromaticity to avoid the steric clash ...