Search results
Results From The WOW.Com Content Network
Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red. Purine nucleobases are fused-ring molecules. Pyrimidine nucleobases are simple ring molecules.
In the A-U Hoogsteen base pair, the adenine is rotated 180° about the glycosidic bond, resulting in an alternative hydrogen bonding scheme which has one hydrogen bond in common with the Watson-Crick base pair (adenine N6 and thymine N4), while the other hydrogen bond, instead of occurring between adenine N1 and thymine N3 as in the Watson ...
The angle between the two glycosidic bonds (ca. 80° in the A• T pair) is larger and the C1 ′ –C1 ′ distance (ca. 860 pm or 8.6 Å) is smaller than in the regular geometry. In some cases, called reversed Hoogsteen base pair s, one base is rotated 180° with respect to the other.
Purine is both a very weak acid (pK a 8.93) and an even weaker base (pK a 2.39). [6] If dissolved in pure water, the pH is halfway between these two pKa values. Purine is aromatic, having four tautomers each with a hydrogen bonded to a different one of the four nitrogen atoms. These are identified as 1-H, 3-H, 7-H, and 9-H (see image of ...
W (weak) and S (strong) are usually not swapped [15] but have been swapped in the past by some tools. [16] W and S denote "weak" and "strong", respectively, and indicate a number of the hydrogen bonds that a nucleotide uses to pair with its complementing partner. A partner uses the same number of the bonds to make a complementing pair. [17]
Top, a G.C base pair with three hydrogen bonds. Bottom, an A.T base pair with two hydrogen bonds. Non-covalent hydrogen bonds between the bases are shown as dashed lines. The wiggly lines stand for the connection to the pentose sugar and point in the direction of the minor groove.
The secondary structure of a nucleic acid is defined by the hydrogen bonding between the nitrogenous bases. For proteins, however, the hydrogen bonding is correlated with other structural features, which has given rise to less formal definitions of secondary structure.
The directionality of a C–H···O interaction is usually defined by the angle α between the С, Н and О atoms, and the distance d between the O and C atoms. In a С–Н···О interaction, the angle α is in the range between 90 and 180°, and the distance d is usually smaller than 3.2 Å. [5] Bond strength is less than 1 kcal/mol.