Search results
Results From The WOW.Com Content Network
Webpage with program to calculate Distance & Bearing; Calculate distance and bearing between two Latitude/Longitude points and much more; See the end point on a map when you specify a start point, a bearing and a distance. More understandable definitions from an online classroom
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
View from the Swabian Jura to the Alps. Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Geopositioning yields a set of geographic coordinates (such as latitude and longitude) in a given map datum. Geographic positions may also be expressed indirectly, as a distance in linear referencing or as a bearing and range from a known landmark.
is the isometric latitude. [5] In the Rhumb line, as the latitude tends to the poles, φ → ± π / 2 , sin φ → ±1, the isometric latitude arsinh(tan φ) → ± ∞, and longitude λ increases without bound, circling the sphere ever so fast in a spiral towards the pole, while tending to a finite total arc length Δ s given by
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
If a navigator begins at P 1 = (φ 1,λ 1) and plans to travel the great circle to a point at point P 2 = (φ 2,λ 2) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle