Search results
Results From The WOW.Com Content Network
This dataset focuses on whether tweets have (almost) same meaning/information or not. Manually labeled. tokenization, part-of-speech and named entity tagging 18,762 Text Regression, Classification 2015 [57] [58] Xu et al. Geoparse Twitter benchmark dataset This dataset contains tweets during different news events in different countries.
Suppose we want to predict, from a large clinical dataset, which patients are likely to develop a particular disease (e.g., diabetes). Assume, however, that only 10% of patients go on to develop the disease. Suppose we have a large existing dataset.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The goal of logistic regression is to use the dataset to create a predictive model of the outcome variable. As in linear regression, the outcome variables Y i are assumed to depend on the explanatory variables x 1,i... x m,i. Explanatory variables. The explanatory variables may be of any type: real-valued, binary, categorical, etc.
[8] [9] The goal of cross-validation is to test the model's ability to predict new data that was not used in estimating it, in order to flag problems like overfitting or selection bias [10] and to give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance from a real problem).
For example, a neural network may be more effective than a linear regression model for some types of data. [14] Increase the amount of training data: If the model is underfitting due to a lack of data, increasing the amount of training data may help. This will allow the model to better capture the underlying patterns in the data. [14]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...