Search results
Results From The WOW.Com Content Network
An initial value problem is a differential equation ′ = (, ()) with : where is an open set of , together with a point in the domain of (,),called the initial condition.. A solution to an initial value problem is a function that is a solution to the differential equation and satisfies
A linear matrix difference equation of the homogeneous (having no constant term) form + = has closed form solution = predicated on the vector of initial conditions on the individual variables that are stacked into the vector; is called the vector of initial conditions or simply the initial condition, and contains nk pieces of information, n being the dimension of the vector X and k = 1 being ...
Guess values can be determined a number of ways. Guessing is one of them. If one is familiar with the type of problem, then this is an educated guess or guesstimate.Other techniques include linearization, solving simultaneous equations, reducing dimensions, treating the problem as a time series, converting the problem to a (hopefully) linear differential equation, and using mean values.
For the equation and initial value problem: ′ = (,), = if and / are continuous in a closed rectangle = [, +] [, +] in the plane, where and are real (symbolically: ,) and denotes the Cartesian product, square brackets denote closed intervals, then there is an interval = [, +] [, +] for some where the solution to the above equation and initial ...
In general, let be a value that is to be determined numerically, in the case of this article, for example, the value of the solution function of an initial value problem at a given point. A numerical method, for example a one-step method, calculates an approximate value v ~ ( h ) {\displaystyle {\tilde {v}}(h)} for this, which depends on the ...
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
The solution's behavior changes continuously with the initial conditions; Examples of archetypal well-posed problems include the Dirichlet problem for Laplace's equation, and the heat equation with specified initial conditions. These might be regarded as 'natural' problems in that there are physical processes modelled by these problems.
In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the i-th approximation (called an "iterate") is derived from the previous ones.