When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands. In an AX 3 E 2 molecule, the two lone pairs occupy two equatorial positions, and the three ligand atoms occupy the two axial positions as well as one equatorial position. The three atoms bond at 90 ...

  3. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    The seesaw molecular geometry is found in sulfur tetrafluoride (SF 4) with a central sulfur atom surrounded by four fluorine atoms occupying two axial and two equatorial positions, as well as one equatorial lone pair, corresponding to an AX 4 E molecule in the AXE notation. A T-shaped molecular geometry is found in chlorine trifluoride (ClF 3 ...

  4. Trigonal planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_planar_molecular...

    In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. [1] In an ideal trigonal planar species, all three ligands are identical and all bond angles are 120°.

  5. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determine the position of each atom. Molecular geometry influences several properties of a substance ...

  6. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  7. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Relativistic effects on the electron orbitals of superheavy elements is predicted to influence the molecular geometry of some compounds. For instance, the 6d 5/2 electrons in nihonium play an unexpectedly strong role in bonding, so NhF 3 should assume a T-shaped geometry, instead of a trigonal planar geometry like its lighter congener BF 3. [38]

  8. Chlorine trifluoride - Wikipedia

    en.wikipedia.org/wiki/Chlorine_trifluoride

    The molecular geometry of ClF 3 is approximately T-shaped, with one short bond (1.598 Å) and two long bonds (1.698 Å). [14] This structure agrees with the prediction of VSEPR theory, which predicts lone pairs of electrons as occupying two equatorial positions of a hypothetic trigonal bipyramid.

  9. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are arccos (− ⁠ 1 / 3 ⁠ ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane ( CH 4 ) [ 1 ] [ 2 ] as well as its heavier analogues .