Ad
related to: specific energy density formula physics equation practice test problems
Search results
Results From The WOW.Com Content Network
It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, stored heat and other thermodynamic properties of substances such as specific internal energy , specific enthalpy , specific Gibbs free energy , and specific ...
Specific mechanical energy is the mechanical energy of an object per unit of mass. Similar to mechanical energy, the specific mechanical energy of an object in an isolated system subject only to conservative forces will remain constant. It is defined as: = k + p. where
Specific energy (MJ/kg) Energy density (MJ/L) Specific energy Energy density (W⋅h/L) Comment Antimatter: 89 875 517 874 ≈ 90 PJ/kg: Depends on the density of the antimatter's form 24 965 421 631 578 ≈ 25 TW⋅h/kg Depends on the density of the antimatter's form Annihilation, counting both the consumed antimatter mass and ordinary matter mass
In the second edition (1914) of this book, Moulton solves the problem of the motion of two bodies under an attractive gravitational force in chapter 5. After reducing the problem to the relative motion of the bodies in the plane, he defines the constant of the motion c 3 by the equation ẋ 2 + ẏ 2 = 2k 2 M/r + c 3,
Specific energy: Energy density per unit mass J⋅kg −1: L 2 T −2: intensive Specific heat capacity: c: Heat capacity per unit mass J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a ...
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Ragone plot showing specific energy versus specific power for various energy-storing devices. A Ragone plot (/ r ə ˈ ɡ oʊ n iː / rə-GOH-nee) [1] is a plot used for comparing the energy density of various energy-storing devices. On such a chart the values of specific energy (in W·h/kg) are plotted versus specific power (in W/kg).
Metallic hydrogen (recombination energy) 216 [2] Specific orbital energy of Low Earth orbit (approximate) 33.0: Beryllium + Oxygen: 23.9 [3] Lithium + Fluorine: 23.75 [citation needed] Octaazacubane potential explosive: 22.9 [4] Hydrogen + Oxygen: 13.4 [5] Gasoline + Oxygen –> Derived from Gasoline: 13.3 [citation needed] Dinitroacetylene ...