Search results
Results From The WOW.Com Content Network
The scalar potential is an example of a scalar field. Given a vector field F, the scalar potential P is defined such that: [1] = = (,,), where ∇P is the gradient of P and the second part of the equation is minus the gradient for a function of the Cartesian coordinates x, y, z. [a] In some cases, mathematicians may use a positive sign in front ...
The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...
Introducing the electric potential φ (a scalar potential) and the magnetic potential A (a vector potential) defined from the E and B fields by: =, =.. The four Maxwell's equations in a vacuum with charge ρ and current J sources reduce to two equations, Gauss's law for electricity is: + =, where here is the Laplacian applied on scalar functions, and the Ampère-Maxwell law is: (+) = where ...
If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow.
Magnetic scalar potential, ψ, is a quantity in classical electromagnetism analogous to electric potential. It is used to specify the magnetic H -field in cases when there are no free currents , in a manner analogous to using the electric potential to determine the electric field in electrostatics .
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
A mathematical function, whose values are given by a scalar potential or vector potential; The electric potential, in the context of electrodynamics, is formally described by both a scalar electrostatic potential and a magnetic vector potential; The class of functions known as harmonic functions, which are the topic of study in potential theory