When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...

  3. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  4. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  5. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n, ⁡ = ⌊ ⌋. For example, isqrt ⁡ ( 27 ) = ⌊ 27 ⌋ = ⌊ 5.19615242270663... ⌋ = 5. {\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor ...

  6. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  7. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    One iteration of the middle-square method, showing a 6-digit seed, which is then squared, and the resulting value has its middle 6 digits as the output value (and also as the next seed for the sequence). Directed graph of all 100 2-digit pseudorandom numbers obtained using the middle-square method with n = 2.

  8. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve).It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve.

  9. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Here is the source for an implementation of Steffensen's Method in Python. from typing import Callable , Iterator Func = Callable [[ float ], float ] def g ( f : Func , x : float , fx : float ) -> Func : """First-order divided difference function.