Search results
Results From The WOW.Com Content Network
The set of all k-combinations of a set S is often denoted by (). A combination is a selection of n things taken k at a time without repetition. To refer to combinations in which repetition is allowed, the terms k-combination with repetition, k-multiset, [2] or k-selection, [3] are often used. [4]
A k-combination of a set S is a k-element subset of S: the elements of a combination are not ordered. Ordering the k-combinations of S in all possible ways produces the k-permutations of S. The number of k-combinations of an n-set, C(n,k), is therefore related to the number of k-permutations of n by: (,) = (,) (,) = _! =!
A k-combination of a set S is a subset of S with k (distinct) elements. The main purpose of the combinatorial number system is to provide a representation, each by a single number, of all () possible k-combinations of a set S of n elements.
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
4 + 1; 3 + 2; 2 + 3; 1 + 4. Compare this with the three partitions of 5 into distinct terms: 5; 4 + 1; 3 + 2. Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number!
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers. For a score of n (for example, if 3 choices match three of the 6 balls drawn, then n = 3), ( 6 n ) {\displaystyle {6 \choose n}} describes the odds of selecting n winning numbers from the 6 winning numbers.