Search results
Results From The WOW.Com Content Network
The length of a line segment is given ... or defined in terms of an isometry of a line (used as a coordinate ... a ball is a line segment. An oriented plane segment ...
If points in the real projective plane are represented by homogeneous coordinates (x, y, z), the equation of the line is lx + my + nz = 0, provided (l, m, n) ≠ (0,0,0) . In particular, line coordinate (0, 0, 1) represents the line z = 0, which is the line at infinity in the projective plane.
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The normal form of the equation of a straight line on the plane is given by: + =, where is the angle of inclination of the normal segment (the oriented angle from the unit vector of the x-axis to this segment), and p is the (positive) length of the normal segment.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.
Choose a line in the hyperbolic plane together with an orientation and an origin o on this line. Then: the x-coordinate of a point is the signed distance of its projection onto the line (the foot of the perpendicular segment to the line from that point) to the origin; the y-coordinate is the signed distance from the point to the line, with the ...
3.3 Other coordinate systems. ... the curve gives a straight line segment with the same length as the curve's arc length. ... in the Euclidean plane is given as the ...
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...