When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometry index - Wikipedia

    en.wikipedia.org/wiki/Geometry_index

    where: α and β are the two greatest valence angles of coordination center; θ = cos −1 (− 1 ⁄ 3) ≈ 109.5° is a tetrahedral angle. When τ 4 is close to 0 the geometry is similar to square planar, while if τ 4 is close to 1 then the geometry is similar to tetrahedral.

  3. Winding number - Wikipedia

    en.wikipedia.org/wiki/Winding_number

    In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number of turns.

  4. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    Although Riemann's mapping theorem demonstrates the existence of a mapping function, it does not actually exhibit this function. An example is given below. An example is given below. In the above figure, consider D 1 {\displaystyle D_{1}} and D 2 {\displaystyle D_{2}} as two simply connected regions different from C {\displaystyle \mathbb {C} } .

  5. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  6. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    The Weierstrass ℘-function, considered as a meromorphic function with values in the Riemann sphere, yields a map from an elliptic curve (genus 1) to the projective line (genus 0). It is a double cover (N = 2), with ramification at four points only, at which e = 2. The Riemann–Hurwitz formula then reads

  7. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In this terminology, the product rule states that the derivative operator is a derivation on functions. In differential geometry, a tangent vector to a manifold M at a point p may be defined abstractly as an operator on real-valued functions which behaves like a directional derivative at p: that is, a linear functional v which is a derivation

  8. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

  9. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the ...