Search results
Results From The WOW.Com Content Network
The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.
The edge connectivity of is the maximum value k such that G is k-edge-connected. The smallest set X whose removal disconnects G is a minimum cut in G . The edge connectivity version of Menger's theorem provides an alternative and equivalent characterization, in terms of edge-disjoint paths in the graph.
If you don't have another browser, download a supported one for free. 2. Check the physical connection - A loose cable or cord can often be the cause of a connection problem. Make sure everything is securely connected to the wall and device. 3.
In the undirected edge-disjoint paths problem, we are given an undirected graph G = (V, E) and two vertices s and t, and we have to find the maximum number of edge-disjoint s-t paths in G. Menger's theorem states that the maximum number of edge-disjoint s-t paths in an undirected graph is equal to the minimum number of edges in an s-t cut-set.
Karl Menger was a young geometry professor at the University of Vienna and Arthur Cayley was a British mathematician who specialized in algebraic geometry. Menger extended Cayley's algebraic results to propose a new axiom of metric spaces using the concepts of distance geometry up to congruence equivalence, known as the Cayley–Menger determinant.
An edge connector is the portion of a printed circuit board (PCB) consisting of traces leading to the edge of the board that are intended to plug into a matching socket. The edge connector is a money-saving device because it only requires a single discrete female connector (the male connector is formed out of the edge of the PCB), and they also ...
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...