When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.

  4. Best, worst and average case - Wikipedia

    en.wikipedia.org/wiki/Best,_worst_and_average_case

    Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements.

  5. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.

  6. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    For typical serial sorting algorithms, good behavior is O(n log n), with parallel sort in O(log 2 n), and bad behavior is O(n 2). Ideal behavior for a serial sort is O(n), but this is not possible in the average case. Optimal parallel sorting is O(log n). Swaps for "in-place" algorithms. Memory usage (and use of other computer resources).

  7. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    Created independently in 1977 by W. Eddy and in 1978 by A. Bykat. Just like the quicksort algorithm, it has the expected time complexity of O(n log n), but may degenerate to O(n 2) in the worst case. Divide and conquer, a.k.a. merge hull — O(n log n) Another O(n log n) algorithm, published in 1977 by Preparata and Hong. This algorithm is also ...

  8. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The time complexity of calculating all primes below n in the random access machine model is O(n log log n) operations, a direct consequence of the fact that the prime harmonic series asymptotically approaches log log n. It has an exponential time complexity with regard to length of the input, though, which makes it a pseudo-polynomial algorithm ...

  9. Polylogarithmic function - Wikipedia

    en.wikipedia.org/wiki/Polylogarithmic_function

    In mathematics, a polylogarithmic function in n is a polynomial in the logarithm of n, [1] (⁡) + (⁡) + + (⁡) +.The notation log k n is often used as a shorthand for (log n) k, analogous to sin 2 θ for (sin θ) 2.