When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reciprocity (electrical networks) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electrical...

    If a current, , injected into port A produces a voltage, , at port B and injected into port B produces at port A, then the network is said to be reciprocal. Equivalently, reciprocity can be defined by the dual situation; applying voltage, , at port A producing current at port B and at port B producing current at port A. [1] In general, passive networks are reciprocal.

  3. Parallel (operator) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(operator)

    Graphical interpretation of the parallel operator with =.. The parallel operator ‖ (pronounced "parallel", [1] following the parallel lines notation from geometry; [2] [3] also known as reduced sum, parallel sum or parallel addition) is a binary operation which is used as a shorthand in electrical engineering, [4] [5] [6] [nb 1] but is also used in kinetics, fluid mechanics and financial ...

  4. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...

  5. Reciprocity (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electromagnetism)

    More technically, it follows that the mutual impedance of a first circuit due to a second is the same as the mutual impedance of the second circuit due to the first. Reciprocity is useful in optics, which (apart from quantum effects) can be expressed in terms of classical electromagnetism, but also in terms of radiometry.

  6. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  7. Millman's theorem - Wikipedia

    en.wikipedia.org/wiki/Millman's_theorem

    In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.

  8. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    One-element networks are trivial and two-element, [note 3] two-terminal networks are either two elements in series or two elements in parallel, also trivial. The smallest number of elements that is non-trivial is three, and there are two 2-element-kind non-trivial transformations possible, one being both the reverse transformation and the topological dual, of the other.

  9. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    Generalization of circuit theory based on scalar quantities to vectorial currents is a necessity for newly evolving circuits such as spin circuits. [clarification needed] Generalized circuit variables consist of four components: scalar current and vector spin current in x, y, and z directions. The voltages and currents each become vector ...