Search results
Results From The WOW.Com Content Network
The structure of the vasa vasorum varies with the size, function and location of the vessels. Cells need to be within a few cell-widths of a capillary to stay alive. In the largest vessels, the vasa vasorum penetrates the outer (tunica adventitia) layer and middle (tunica media) layer almost to the inner (tunica intima) layer.
Individual capillaries are part of the capillary bed, an interweaving network of capillaries supplying tissues and organs. The more metabolically active a tissue is, the more capillaries are required to supply nutrients and carry away products of metabolism.
A metarteriole is a short microvessel in the microcirculation that links arterioles and capillaries. [1] Instead of a continuous tunica media, they have individual smooth muscle cells placed a short distance apart, each forming a precapillary sphincter that encircles the entrance to that capillary bed.
Differences in vascular permeability between normal tissue and a tumor. Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the capacity of a blood vessel wall to allow for the flow of small molecules (drugs, nutrients, water, ions) or even whole cells (lymphocytes on their way to the site of inflammation) in and out of the vessel.
Precapillary resistance is the modulation of blood flow by capillaries through vasomotion, either opening and letting blood pass through, or by constricting their lumens, reducing bloodflow through the capillary bed (occluding the passage of blood).
The venous system apart from the post-capillary venules is a high volume, low pressure system. Vascular smooth muscle cells control the size of the vein lumens, and thereby help to regulate blood pressure. [31] The post-capillary venules are exchange vessels whose ultra-thin walls allow the ready diffusion of molecules from the capillaries. [10]
This is called the precapillary sphincter. The precapillary sphincter has now also been found in the brain, where it regulates blood flow to the capillary bed. [3] The sphincter can open and close the entrance to the capillary, by which contraction causes blood flow in a capillary to change as vasomotion occurs. [4] [unreliable source?
In a healthy vascular system, the endothelium lines all blood-contacting surfaces, including arteries, arterioles, veins, venules, capillaries, and heart chambers. This healthy condition is promoted by the ample production of nitric oxide by the endothelium, which requires a biochemical reaction regulated by a complex balance of polyphenols, various nitric oxide synthase enzymes and L-arginine.