Search results
Results From The WOW.Com Content Network
Mott cells with Russell bodies (red arrows), compared to an almost normal plasma cell (white arrow; it has a prominent nucleolus). Plasmacytoma with abundant Russell bodies. H&E stain. Dutcher and Russell bodies. H&E stain. Russell bodies are inclusion bodies usually found in atypical plasma cells that become known as Mott cells. [1]
Plasma cells with Dutcher and Russell bodies (H&E stain, 100×, oil) Plasma cells are large lymphocytes with abundant cytoplasm and a characteristic appearance on light microscopy. They have basophilic cytoplasm and an eccentric nucleus with heterochromatin in a characteristic cartwheel or clock face arrangement.
[15] [16] But if the p-value of an observed effect is less than (or equal to) the significance level, an investigator may conclude that the effect reflects the characteristics of the whole population, [1] thereby rejecting the null hypothesis. [17] This technique for testing the statistical significance of results was developed in the early ...
In his highly influential book Statistical Methods for Research Workers (1925), Fisher proposed the level p = 0.05, or a 1 in 20 chance of being exceeded by chance, as a limit for statistical significance, and applied this to a normal distribution (as a two-tailed test), thus yielding the rule of two standard deviations (on a normal ...
Exact tests that are based on discrete test statistics may be conservative, indicating that the actual rejection rate lies below the nominal significance level . As an example, this is the case for Fisher's exact test and its more powerful alternative, Boschloo's test. If the test statistic is continuous, it will reach the significance level ...
The chart portion of the forest plot will be on the right hand side and will indicate the mean difference in effect between the test and control groups in the studies. A more precise rendering of the data shows up in number form in the text of each line, while a somewhat less precise graphic representation shows up in chart form on the right.
This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution. If the q s value is larger than the critical value q α obtained from the distribution, the two means are said to be significantly different at level α : 0 ≤ α ≤ 1 . {\displaystyle \ \alpha ...
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]