Search results
Results From The WOW.Com Content Network
Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. [ 1 ] [ 2 ] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
In addition to genes, eukaryotic chromosomes contain sequences involved in ensuring that the DNA is copied without degradation of end regions and sorted into daughter cells during cell division: replication origins, telomeres, and the centromere.
The backbone of the DNA strand is made from alternating phosphate and sugar groups. [14] The sugar in DNA is 2-deoxyribose, which is a pentose (five-carbon) sugar. The sugars are joined by phosphate groups that form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
A segment of DNA. Genes are like sentences made of the "letters" of the nucleotide alphabet, between them genes direct the physical development and behavior of an organism. Genes are like a recipe or instruction book, providing information that an organism needs so it can build or do something - like making an eye or a leg, or repairing a wound.
DNA replication also works by using a DNA template, the DNA double helix unwinds during replication, exposing unpaired bases for new nucleotides to hydrogen bond to. Gene synthesis, however, does not require a DNA template and genes are assembled de novo. DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The ...
An entire gene family may also be lost, or gained through de novo gene birth, by such extensive divergence such that a gene is considered part of a new family, or by horizontal gene transfer. When the number of genes per genome remains relatively constant, this implies that genes are gained and lost at relatively same rates.
There are two fundamental differences between the methods. One is that molecular cloning involves replication of the DNA within a living cell, while PCR replicates DNA in the test tube, free of living cells. The other difference is that cloning involves cutting and pasting DNA sequences, while PCR amplifies by copying an existing sequence.