When.com Web Search

  1. Ads

    related to: fractional derivative calculator math problems

Search results

  1. Results From The WOW.Com Content Network
  2. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Fractional calculus is a branch of mathematical ... In 2013–2014 Atangana et al. described some groundwater flow problems using the concept of a derivative with ...

  3. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()

  4. Differintegral - Wikipedia

    en.wikipedia.org/wiki/Differintegral

    is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q -th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral.

  5. Initialized fractional calculus - Wikipedia

    en.wikipedia.org/.../Initialized_fractional_calculus

    If the differ integral is initialized properly, then the hoped-for composition law holds. The problem is that in differentiation, information is lost, as with C in the first equation. However, in fractional calculus, given that the operator has been fractionalized and is thus continuous, an entire complementary function is needed.

  6. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  7. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    In fractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.

  8. Caputo fractional derivative - Wikipedia

    en.wikipedia.org/wiki/Caputo_fractional_derivative

    In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.

  9. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).