When.com Web Search

  1. Ad

    related to: schwarzschild radius of a human face diagram labeled with parts

Search results

  1. Results From The WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  3. Black hole cosmology - Wikipedia

    en.wikipedia.org/wiki/Black_hole_cosmology

    A black hole cosmology (also called Schwarzschild cosmology or black hole cosmological model) is a cosmological model in which the observable universe is the interior of a black hole. Such models were originally proposed by theoretical physicist Raj Kumar Pathria , [ 1 ] and concurrently by mathematician I. J. Good .

  4. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    In these coordinates, the horizon is the black hole horizon (nothing can come out). The diagram for u-r coordinates is the same diagram turned upside down and with u and v interchanged on the diagram. In that case the horizon is the white hole horizon, which matter and light can come out of, but nothing can go in.

  5. Chernoff face - Wikipedia

    en.wikipedia.org/wiki/Chernoff_face

    Chernoff faces, invented by applied mathematician, statistician, and physicist Herman Chernoff in 1973, display multivariate data in the shape of a human face. The individual parts, such as eyes, ears, mouth, and nose represent values of the variables by their shape, size, placement, and orientation.

  6. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. [1] Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

  7. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    It turns out that curves of constant r-coordinate in Schwarzschild coordinates always look like hyperbolas bounded by a pair of event horizons at 45 degrees, while lines of constant t-coordinate in Schwarzschild coordinates always look like straight lines at various angles passing through the center of the diagram.

  8. Spaghettification - Wikipedia

    en.wikipedia.org/wiki/Spaghettification

    It shows both the tidal field (thick red arrows) and the gravity field (thin blue arrows) exerted on the body's surface and center (label O) by a source (label S). In astrophysics , spaghettification (sometimes referred to as the noodle effect ) [ 1 ] is the vertical stretching and horizontal compression of objects into long thin shapes (rather ...

  9. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    Since the Schwarzschild metric is expected to be valid only for those radii larger than the radius R of the gravitating body, there is no problem as long as R > r s. For ordinary stars and planets this is always the case. For example, the radius of the Sun is approximately 700 000 km, while its Schwarzschild radius is only 3 km.